BS EN 10034 : 1993

Structural steel I and H sections Tolerances on shape and dimensions

<u>Rolling tolerances for structural steel I and H sections</u> Section height (*h*)

The deviation from nominal on section height measured at the centre of web thickness shall be within the tolerance given in table 1.

Flange width (b)

The deviation from nominal on flange width shall be within the tolerance given in table 1.

Web thickness (s)

The deviation from nominal on web thickness measured at the mid-point of dimension h shall be within the tolerance given in table 1.

Flange thickness (t)

The deviation from nominal on flange thickness measured at the quarter flange width point shall be within the tolerance given in table 1.

Out-of-squareness (k + k')

The out-of-squareness of the section shall not exceed the maximum given in table 2.

Web off-centre (e)

The mid-thickness of the web shall not deviate from the mid-width position on the flange by more than the distance (*e*) given in table 2.

Straightness $(q_{xx} \text{ or } q_{yy})$

The straightness shall comply with the requirements given in table 3.

Tolerances on mass

The deviation from the nominal mass of a batch or a piece shall not exceed $\pm 4.0\%$.

The mass deviation is the difference between the actual mass of the batch or piece and the calculated mass.

Table 1. Dimensional tolerances for structural steel I and H sections

Section height <i>h</i>		Flange width <i>b</i>		Web thickness <i>s</i>		Flange thickness t	
height	tolerance	width	tolerance	thickness	tolerance	thickness	tolerance
mm	mm	mm	mm	mm	mm	mm	mm
<i>h</i> ≤ 180	+3.0	<i>b</i> ≤110	+4.0	<i>S</i> < 7	<u>+</u> 0.7	<i>t</i> < 6.5	+1.5
	-2.0		-1.0				-0.5
180 < <i>h</i> ≤ 400	+4.0	110 < <i>b</i> ≤ 210	+4.0	7 <u><</u> <i>s</i> < 10	<u>+</u> 1.0	6.5 <u><</u> <i>t</i> < 10	+2.0
	-2.0		-2.0				-1.0
$400 < h \le 700$	+5.0	210 < <i>b</i> ≤ 325	+4.0	10 <i>≤ s <</i> 20	<u>+</u> 1.5	10 <i>≤ t <</i> 20	+2.5
	-3.0		-4.0				-1.5
<i>h</i> > 700	+5.0	<i>b</i> > 325	+6.0	$20 \le s < 40$	<u>+</u> 2.0	$20 \le t < 30$	+2.5
	-5.0		-5.0				-2.0
				$40 \le s < 60$	<u>+</u> 2.5	$30 \le t < 40$	+2.5
							-2.5
				$s \ge 60$	<u>+</u> 3.0	$40 \le t < 60$	+3.0
							-3.0
						t≥60	+4.0
							-4.0

Fig 1. Dimensional tolerances for structural steel I and H sections $\ensuremath{\gamma}$

The calculated mass shall be determined using a density of 7.85 kg/dm³.

Tolerances on length

The sections shall be cut to ordered lengths to tolerances of: a) ± 50 mm; or

b) + 100 mm where minimum lengths are requested.

L represents the longest useable length of the section assuming that the ends of the section have been cut square (see figure

Table 2. Tolerances on out-of-square and weboff-centre of structural steel I and H sections

Out-of-square <i>k</i> + <i>k</i> ′		Web off-centre e where $e=b1-b22$		
flange width b	tolerance	flange width b	tolerance	
mm	mm	mm	mm	
<i>b</i> ≤110	1.5	Where $t < 40$		
<i>b</i> > 110	2% of <i>b</i>	<i>b</i> ≤110	2.5	
	(max 6.5)	110 < <i>b</i> ≤ 325	3.5	
		<i>b</i> > 325	5.0	
		Where $t \ge 40$		
		$110 < b \le 325$	5.0	
		<i>b</i> > 325	8.0	

Table 3. Tolerances on straightness of struc-tural steel I and H sections

Section height <i>h</i>	Tolerance on straightness <i>qxx</i> and <i>qyy</i> on length <i>L</i>
mm	%
80 < <i>h</i> < 180	0.30 L
180 < <i>h</i> ≤ 360	0.15 <i>L</i>
h > 360	0.10 <i>L</i>

Fig 3. Tolerances on straightness of structural steel I and H sections

